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OF MULTIVARIATE REGRESSION WITH
A DIRICHLET INVARIANT PRIOR

ABSTRACT

The paper considers nonparametric Bayes estimation of the re-
gression coeflicient matrix in a multivariate regression problem un-
der the squared error loss function using a Dirichlet invariant process
prior, and a mixture of Dirichlet invariant process priors. This gen-
eralizes the work of Poli (1985).

1. INTRODUCTION

Consider a multivariate regression problem where we have a sam-
ple of n independent observations {y1i,...,¥pi; Z1i,--  sfEigil) 5 B
1,...,n,onaset of d(= p+q) random variables z = (y',=')’ € R?,
with ¥ € R? and @ € R? having the joint distribution F' which is
assumed to be unknown. We are primarily interested in capturing
the relationship between the variables y and .

Data of this type is often analyzed using the multivariate regres-
sion model in which we assume the linear relation

Y=XB+E (1.1)
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where Y is an n X p matrix whose ith row is y; = (yy3,.. o Ypi)
X isan n X ¢ matrix with ith row 2 = (21i,...,24) and E s,
random 7 X p matrix with mean 0 and covariance matrix ¥ ® J for
some p X p positive-definite matrix ¥ . Focus is on estimating the
g X p parameter matrix B. Under these assumptions the ordinary
least squares estimator of B is given by

B=(X'X)"'X'y (1.2)

which does not depend on X' (see, e.g., Press (1982), p. 231-232),

The corresponding parametric Bayes analysis of the model (1.1),
usually under the assumption that F' is matrix variate normal, pro-
ceeds by assuming a prior distribution for B and ¥ and finding the
posterior of B through an application of the Bayes rule. The details
are available in Zellner (1971) and Press (1982).

In the nonparametric Bayes framework, as exposited by Gold-
stein (1976) (also, see Prakasa Rao (1983), Section 11.4) and em-
ployed in Poli (1985), model (1.1) is not assumed to hold. Instead, a
predictive approach is adopted in which the matrix B is chosen to
minimize the mean-squared prediction error

EFIZ [(y:z+1 . m;'a+1B) w ('yLH - :c’n+1B)'] (1.3)

where y:1+1 = (yl.ﬂ.+ﬁla vey yp,'n.-i-l) and m21+1 - (wl,n-l-la seley wq,n—&—l)
are the (n+1)st future observations from F', W is a weight matrix,
and EF!Z denotes the expectation with respect to the distribution
of zn11 = (Y541, @hyq) given the data Z = [Y : X]; that is, the
predictive distribution. The minimizing solution to (1.3) is given by

B*=D714 (1.4)

where D = EFIZ(z, 12! ) is of order ¢ X ¢ and is assumed
nonsingular, and A = EF|Z(wn+1 Y1) is of order ¢ X p.

As stated in Poli (1985), “the achieved estimate B* provides the
best linear prediction of y,41 in terms of x,4; , without assuming
however that the conditional mean of y; n41(¢ = 1,...,p) is alinear
function of 2,4 .” |

In order to compute (1.4), we need to find the predictive distri-
bution function of z,4, given the data. If we let

F(z) = P(~00, 2] (1.5)
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where P is a probability measure on (R?, R?) with the distribu-
tion F', then the predictive distribution of z,4; given the data
is obtained in the Bayes setup by assigning a prior distribution on
the space P of all probability measures, then deriving the posterior
distribution of F' given the data Z and computing its mean.

An analysis along these lines is conducted in Poli (1985) under
the assumption that the prior distribution of F is (i) Ferguson’s
(1973) Dirichlet process prior, and (ii) Antoniak’s (1974) mixture of
Dirichlet process priors. Both these priors are defined on (P, o(P)),
where o(P) is the smallest o-field of subsets of P such that the
map P — P(A) is o(P)-measurable for each A in R%.

In this note, we generalize Poli’s (1985) work by assuming that
prior beliefs are represented by Dalal’s (1979) Dirichlet invariant pro-
cess prior which yields posterior distributions that are invariant un-
der a given group of transformations. It is noteworthy that with this
formulation we can, for example, assign priors on the class of distri-
butions that are symmetric around arbitrary points, or on the class
of distributions that are exchangeable in coordinates.

The paper is organized as follows. In Section 2, some definitions
and results on the Dirichlet o invariant process priors are presented.
They are used in the sequel. In Section 3, the Bayes estimator B*
of the regression coefficient matrix B is derived under a Dirichlet in-
variant process prior, and then under a mixture of Dirichlet invariant
process priors.

2. PRELIMINARIES ON A DIRICHLET INVARIANT
PROCESS PRIOR

In this section, we introduce some definitions and results that
are used in the sequel. Let (£, 5,Q) be a probability space.

Definition 2.1. A random probability measure on P on (R?, R?)
is a measurable map from (£,5,Q) into (P,o(P)). The induced
measure QP~! on (P,o(P)) is called the prior distribution of P.

A random probability measure P can be regarded as a transition
function P(-,-) from Q x R? — [0,1] such that, for each w in
), P(w,-) is a probability measure on (R¢, R?) and, for each A
in R?, P(-,A) is an S -measurable function. If P is a random
probability measure and F is given by (1.5), then F is called a
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random distribution function.

Let G = {g1,...gx} be a finite group of measurable transformy,.
tions from RY into itself. A measure v is said to be G -invariag
if v(gA) = v(A) forall g € G and all A € R?. A set 4 € .R”’I
is called G -invariant if gA = A for all g € G. By a G -invariant
measurable partition (Ay,...,A4;) of R?, we mean that the setg of
the partition are G -invariant and R“-measurable.

Definition 2.2. (Dalal (1979)). Let a be a finite, nonnull @G-
invariant measure on (R¢, R?) and let P be a G -invariant random
probability measure on (R?, R?). Wesay P has the Dirichlet invari-
ant process prior DG(a) with parameter a, if, for every finite G-
invariant measurable partition (Ay,...A4;) of R? | the joint distriby-
tion of (P(A;),...,P(A;)) under DG(a) is the singular Dirichlet
distribution D(a(A1),...,a(A,)) as defined in Wilks (1962).

If F' is the random distribution function associated with a ran-
dom probability measure P on (R¢, R%), we use the notation
F € DG(a) to denote that the prior distribution of P is DG(a).
When G consists of a single element, namely the identity transfor-
mation, the Dirichlet-invariant process DG(a) is indeed Ferguson’s
(1973) Dirichlet process prior D(«) with parameter o . Alternative
definitions of the Dirichlet invariant process prior are given by Dalal
(1975) and Tiwari (1981).

Let F € DG(e). By a random sample zy,...,2, of size n
from F we mean that, given F,the random vectors zi,...,z, are
independent and identically distributed with common distribution
F. For any z € R%, let 6, denote the degenerate probability
measure at =z.

Theorem 2.3. (Dalal (1975)). Let F € DG(a) and let z,...,2x
be a random sample of size n from F, then the conditional distri-
bution of the random probability measure P (associated with F')
is the Dirichlet invariant process prior with the (updated) parameter

n k n k
a+Zk—1 Zégi(,j); that is, F|Z€DG<a+Zk"1 269-‘(‘:‘)>'
j=1 i=j i=1 =1
Let Gpu = {e,gu} where e(z)=2z and gpu(z)=2p -z
for z € R? and p € R%. Let ay be symmetric about u ,1.e.
g p -invariant. Then we have the following:
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Theorem 2.4. (Dalal (1975)). Let Fy € DG(ay ) and, given p
and Fy ,let Z= (z1,...,2n) be a random sample from Fy . Let

# have prior density £. Then
F|Zp € DG(a,, + %i(az,. +52p.—z,-)) )
i=
and
F|Z e /mDG(a,, +%Xn:(a,,. +62,,_,,.))d5(u|2) .

j=1

when £(-| Z) is the density of u given the data.
From Theorem 2.3, the predictive distribution of 2,41 given the
data Z is

F(t) = EF(F(t)]

n k
= pa(®) + (L= )= oD daap(-o0,8, (21)
1

i=1i=
where
pu= M/(M +n), &(t)=a(-o00,8/M, M=o(BY). (22)

In the case when Gpu = {e,gpu} with e(z) = z , gp(2) =
24 — z , z € R?, from Theorem 2.4 the predictive distribution of

Zp41 18 given by
B(t) = EMZEFIZB{F(t)}
= 542 { o (6)+ (1= o)
x% ; [65;(—00,t] + 52,._,,.(-oo,t]]} (2.3)

where

au(y= 2ty —a (.

(2.4)

__Mu
EaE (My +n)’
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The definition of a mixture of Dirichlet invariant process priors ig
given next. Let (©,A) and (U, B) be two measurable spaces. A
transition measure § is a mapping from Ux A into [0, 00) such that
for every u € U, fB(u,-) is a finite, nonnegative, nonnull measure op
(0,A), and for every A € A, (-, A) is B -measurable function.
Note that this differs from the definition of a transition probability
in that B(u,©) need not identically be one. We say a transition
measure § is a G-invariant if for each v € U, g € G and 4 ¢
Rd7 ﬂ(uagA) . ﬂ(u7A) 2

Definition 2.5. Let (U,B,H) be a probability space, called the
index space, and let & be a G -invariant transition measure function
on U x R?. We say a (G -invariant random probability measure P
on (R% R?) has the mixture of Dirichlet invariant process priors
with mixing distribution H on (U, B), and G -invariant transition
measure «, if, given w € U, P has prior DG(a(u,-)), where o
has distribution H .
In concise symbols we use the notation:

Fe /U DG(a(u, ))dH(u),

where F' is the random distribution associated with P. When G
has only a single element, a mixture of Dirichlet invariant processes
reduces to Antoniak’s (1974) mixture of Dirichlet processes. As an
example, let P have prior DG(a). Define

k
a(z,A) = a(A) + %Zégi(,)(A) .

i=1

Note that a(z,gA) = a(z,A4) forall z€ R, g€ G and A € R®.
Let H be a fixed probability measure on (R?, R?). Then the pro-
cess P* which chooses z accordingto H ,and P from DG(a,z,-))
is a mixture of Dirichlet invariant process priors as defined above.

Moreover, if (By,...,B,) is any G -invariant measurable partition
of R%, then

(P(By), ..., P(B)) € Z H{B)DGBY), ..., aBY+1, ..., a(B,)).

i=1
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The properties of a mixture of Dirichlet invariant processes can be
derived similarly to those of a mixture of Dirichlet processes (cf.
Antoniak, 1974). For example, if

Fe /U DG(o(u,))dH(u), and z|F~F,

then the marginal distribution of z is given by

P(z € A) = / &(u, AiH(u), A€ RY, (2.5)
U
where
&(u, 4) = a(u, 4)/a(u, B) , (2.6)
o P(z € A|u) =E"[P(z € 4|, P) | u]
=E[P(A) | v]
=a(u,A) a.s.[H]
and hence,

P(z € A) = E¥a(u, A) = /U a(u, A)dH(u) .

Also, if F € DG(a) and z is a random sample of size one from F,
and if A € R?, then

Flzea € /ADG’(a(z, )daa(z) ,
where
1k
a(z,))=a+ Z 269-'(") for 2 € A, and @4(B)=a(Bn A)/a(A)
i=1

for B € R%. That is, the posterior distribution of F, given that z
has fallen in a set A, is a mixture of Dirichlet invariant processes
with an index space (4, R*N A) and transition measure o on A x
(RNA), with mixing distribution H4 = @4 . Note that if z itselfis
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observed, the conditional distribution of F' given z is not a mixture

but simply
DGl a+ - i 6
k — 9i(2) }

and by induction on the sample size,

n k
FlZe DG(a +> kT Zagi(,j)) :

i=1 =1

Also, note that with A = R* we have [p, DG(a+}Z6,,(z))da(z) =
DG(a). Thus the conditional distribution of a Dirichlet invariant
process given only the information that a sample was observed, and
not its value, is the same as the original distribution. Alternatively,
if we treated mixing as an operator, this would be the identity oper-
ator. Let (U, B) be a standard Borel space (see, e.g., Parthasarathy
(1967)). Then from the above discussions, we have the following
result.

Theorem 2.5. Let F € [, DG(a(u,-))dH (uv). Given F,let Z =

(21,...,2,) be a sample of size n from F. Then,
n k
F|Ze/ DG(a(u, )+ Y k™ by(z;))dH (u] 2) .
ji=1 i=1

Now, from (2.5) and Theorem 2.5 the predictive distribution
of z,41 given the data Z under the assumption that F €
J DG(a(u,-))dH (u) is given by

F(t) = E“'ZEF|Z’“{F(t)}

= EuZ [pna(u t] +

n k
Z: Z 69-‘(‘;’)(_00’ t]]

1:=1

/{ {Pna(u t]+ En:zk:égi(zj)(_oo,t]}dﬂ(u | Z)

j=11i=1

(2.7)

where a(u,t] = a(u,(—00,t]) is given by (2.6), and H(u | Z) is
the posterior distribution of u given the data Z .
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3. BAYES ESTIMATION

3.1 Bayes estimation with a Dirichlet invariant prior

Assume G = {g1,...,9x} is a finite group of transforma-
tions defined from R into itself. For any z € R?, define gz =
(921,...,924) Vg € G. Let (,4')th element of matrix D in (1.4)
be denoted D;; and let the (%, 7) th element of matrix A in (1.4) be
denoted A;;. Then under prior DG(ar), and the assumption that

Bal) = [ alda(y,s) < oo,

E‘_'(yjz-)z/ﬁd yjz-d&(y,a:)<oo, 1<i<gq, 1<j<p, (3.1)
we have
Dy = EFVZ (2 py1 - 231 ny1)

. 1 n k
= PnB @it 2ini) + (L= pn) = 30 Y " 0e (@im - Tom)

m=1 ¢=1
wi'=1,...,q,(3.2)
and
Aij = EFVZ (2 1 - Y5 1)
1 n k
= 2B (@ins1 - Y1) + (L= 2n) = D >~ g (im - Yjm)

m=1 ¢=1
i=1,...,q¢, j=1,....p. (3.3)

From (3.2), the matrix D is
(-p)§
D = puE® (@ 1@npn) + ; ge(X'X),  (34)
and from (3.3) the matrix A is

k
L = Pn
A=p,E* (a:;,_,_la:n.{.l) + (—nk—) ez—;gg(X’Y) . (3.5)
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Thus from (3.4) and (3.5) the Bayes estimator of B under prior
DG(a) is given by

B*=D"'4A

k -1
. 1
= {an (mn+1w%+1) +(1_pn)E;gZ(X,X)}

k
: 1
X (ana(mnHy;m) +(1- pn)E ;gl(X’Y)) . (3.6)
Note that (3.6) can be rewritten as

*O - o . 1 :
B* =D lpn E (mn+1mln+l) B° +D 1(1 - pn)'@ ;gg(X,Y) )

(3.7)
where

B = (EaY (“3n+1‘l’,n+1))_1 E® (mn+ly;z+1) (3.8)

is the Bayes estimator of B for zero sample size. If we consider
a sequence of Dirichlet invariant process priors {DG(a:)}2y such
that

a:(R*) =0 and sup | @(A)— @(A)|—0 as t — oo,
A€Rs

then (see, e.g., Sethuraman and Tiwari (1982)) under the uniform
integrability of the sequences {gX?,,,}52, and {gYjn41}2; (i=
1,...,¢,5=1,...,p)V g € G, w.r.t. &;, we have

k
1 !
Diy — P ; ge(X'X)

and

k
1
Aij — E;gg(X,Y) as t — 00 .

Thus, the limiting Bayes estimator of B (as a:(R%) — 0) is given

by
B = (g ge(X’X))_l (g s(X'Y)) (3.9)



nder prior

e(X'Y)
(3.7)

(3.8)

e consider
1820 such

le uniform

1}?;1 (i =

) is given

(3.9)

MULTIVARIATE REGRESSION 211

If G has a single element, then from (3.6) and (3.9) we have

-1
B = {ana (mn+1m,n+1) +(1- pn)‘}l(X,X)}
 (BoB* (entathn) + A=) 7(XD)) L (310

and
B™ = (X'X)"{(X'Y). (3.11)

The estimators B** and B** given by (3.10) and (3.11), respec-
tively are the Bayes and the limiting Bayes estimators of B under
Dirichlet process prior D(e). Note that B** coincides with the
ordinary least squares estimator B given by (1.2).

When Gy ={e,gp} ,where e(z)=z, gu(z)=2p -2,
then using the predictive distribution F p of znp1 given in (2.4)
we have

Dii' = E‘“Z( E H (:l)Z nt1 " Ty n+1) + (1 bl pn,ﬂ) [E TimTitm

+ Z (2#i_$im)(2ui'_wi’m)]) iai’: 1,...,q
m=1
(3.12)

and

A’l] —Eﬂ'l (p }JE s (wz n+l® y],n+1) + 1 . pn,ﬂ [ Z TimYjim

(3.13)

+ Z(2Hi_wim) (QNj—yjm)]> i=1,..,¢, 7=1,.,p
m=1

If My isindependent of g, we can replace pp, y in (3.12) and
(3.13) by p, . Expressions (3. 12) and (3.13) can be explicitly com-
puted under the following cases.

(1) Diffuse prior for p : Let & have density given by Ny4(0,I4),
the d-dimensional multivariate normal distribution with mean 0
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and covariance matrix Iy. Then the density of &y is the density
of Ng(p,I). Let ¢ denote the density of a standard normal distri-
bution. Let g have a uniform prior on R% with density h( p)=1,

g € R%. Then
E°8 (% pt1 * Tir 1) = pibbir
E%s (Zipt1 - Yjmg1) = pikj , 1<4,9<qg,1<5<¢q. (3.14)

If all the observations { zir,9ir ; 1<t < ¢, 1<j<p, 1<
r < n } are assumed to be distinct, then from Dalal (1975, equation
(32)) we have

fi=E"(u; | 2)

a [] p(zir—Z:)Ti+ D, ¢(.’Eit—(J;"’;rx”))¢((I”j”))(J:";Lx”)
r=1 1<r#s#t<n

a ﬁ ¢(zi’r‘ . Ez) + E ¢, (xit - (-Luixu)) ¢ (:L‘ir;:b'.‘a)
r=1 1<r#s#t<n
(3.15)

for 1<i<q ,and @ =4M/27/n . The expression for fji; =
EMu; | Z2), 1 <j<p,is obtained from (3.15) by replacing .,
Tis, Tit, Ti DY Yjr, Yjs» Yjt, §; respectively. From (3.12)-(3.15)
we have

. 1 (¢
Dy = ppfrifti + (1 — p")_nk ( E ZimTitm
m=1

+ ) (20 — @im) (200 — wi'm))

m=1

= (2= pu)fiifier — (1 = pn)[iZsr + frar T4]
(1-pn) © )
+ m mz=:1$zmxz'm )

1<i#4id<q, (3.16)

and
n

~ A P - 1_pn
Aij=(2-pn)fiifi;—(1-pn) [“iyj+ﬂj$i]+( = )E TimTjm

m=1
(3.17)
1<1<g, 1<j<p.
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(1) Informative prior for p . Suppose @y = Na(p,0%ly) , >0
(known), and p has prior Ng(v, 72I;) . In this case

=7 [a(wl)Z (#) (T:)} (3.18)

-1

1 Zivt+2is Tir—Tia\ [Tir+Tis
< X o(a g o (277 ()
1<r#s#t<n

where n n
b= (55 + 72),

and, for 1<i<q,

a(m,)—4M/ H (“" )%sb (%) dpi

- (xilw . 'min) ’

D= [ata) Y- o2 Y (3.19)
r=1
1 1 Tir + Zis Tip — Tig
2 (Gl Tt )]

A similar expression for fi; , 1 < j < p , can be obtained from
(3.18) and (3.19) by replacing =i, Tis, Z; and T; by Yjr, Yjs s
Y; and fj , respectively. Now, D;;, and A;; can be obtained from
(3.16)—(3.19).

The cases where the observations are not all distinct can be dealt
with similarly. But the computations become very tedious and hence
are omitted.

3.2 Bayes estimation with a mixture of Dirichlet invariant priors

Once again let G = {¢1,...,9x} be a finite group of mea-
surable transformations from R into itself. For z € R?, define
gz = (9z1,...,9%4) Vg € G. Then from (2.7), we have

Dii’ S anuleE(u,-) {wi n+l * Tg n+1}

il =
( Pn) Zzge (Forpety * Bttt ey LS E i <q,
m=1 £=1

(3.20)
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and
Aij = anulea(u")lu {Tint1 Yjns1}

n k
[-I- - 'Pn)
] T Z Zgl (xi,n-}-l y yj,n+l) ’ (321)

m=1 ¢=1

The Bayes estimator of the regression coefficient matrix B can be
obtained from (3.20) and (3.21).

We now provide an example in which by choice of elements of
G, the Bayes estimates of B with a G -invariant mixture of Dirich-
let processes prior reduce to the Bayes estimate with a mixture of
Dirichlet processes prior. Let G = {e,g} where e(z) =2z and
g(z) = —z for z € R. Assume H , the mixing distribution, has
density A(U) = W;'(U | C,p) , v > 2d, where W' denotes
the density of an inverted Wishart distribution with positive definite
matrix C and f =y —d—1 degrees of freedom. Given U, let
a(U,) = Ng(-| 0,U) be the transition measure. Note that o(U,")
is G -invariant. Thus, the assumptions of Theorem 2.5 hold. As
shown in Poli (1985) the posterior density of the random matrix U
is MU|Z)=W;'(U|G,vs) , where G = (YX)(YX)+C),
and vx =n+1y . Thus, from (3.20) and (3.21) we have

Dy = pn/d ziz) dSy(y, x | 0,H,,,vx)
R
+£]_—p")zn:$ -2y 1<, ' <q, (3.22)
?? 1 m imy g 7 - b
m=

and

i = pn/d z;y; dSq(y,x | 0, Hyu, v¥)

R

d—p) & (3.23)
"2 Tim¥im, 1<i<gq, 1<j<p,

T
m=1

where S is the distribution function of a d-variate student distri-
bution with mean vector 0 and covariance matrix H,, = (v )GL.



B can be

lements of
 of Dirich-
mixture of
=z and
ution, has
1 denotes
ve definite
ren U, let
at (U, -)
hold. As
matrix U

X)+0C),

q, (3.22)

(3.23)

lent distri-
(v*)G1.

MULTIVARIATE REGRESSION 215

The Bayes estimator of B can now be derived using (3.22) and
(3.23), and is identical to Poli (1985), equation (6).
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